

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982-2014

Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä

2.2.2022 Snow Seminar

Introduction

- Global SWE shows negative trend, but seasonal and temporal variability is large
- Climate models have had difficulties in correctly reproducing the seasonal snow and its recent trends
- How the new CMIP6 climate models can describe the seasonal snow, and where the uncertainties and discrepancies arise?

The main goals of this study are:

- 1. to intercompare the CMIP6 and observation-based SWE estimates and
- 2. to analyze whether temperature and precipitation biases could explain the SWE biases

Model data

CMIP6

- **17** models (resolution 100 km)
- Variables: snw, pr and tas
- Experiment ID: historical and esm-hist

Institution	Model	Experiment ID
BCC	BCC-CSM2-MR	historical
		esm-hist
NCAR	CESM2	historical
	CESM2-WACCM	historical
LLNL	E3SM-1-0	historical
EC-Earth- Consortium	EC-Earth3	historical
	EC-Earth3-AerChem	historical
	EC-Earth3-CC	esm-hist
	EC-Earth3-Veg	historical
NOAA-GFDL	GFDL-CM4	historical
	GFDL-ESM4	historical
		esm-hist
MPI-M	MPI-ESM1-2-HR	historical
MRI	MRI-ESM2-0	historical
NCC	NorESM2-MM	historical
SNU	SAM0-UNICON	historical
AS-RCEC	TaiESM1	historical

Observation-based data

Snow water equivalent (SWE)

- Non-mountainous regions: Bias-corrected SnowCCI
 - Satellite passive microwave radiometer data, in situ snow depth data and snow course SWE measurements
 - The bias-correction method significantly reduces the uncertainty of NH SWE estimation
- **Mountainous regions**: mean of MERRA-2, Brown and Crocus v7 datasets

Temperature (T)

- MERRA-2 reanalysis
- 2 m air temperature

Precipitation (P)

- GPCC Version 2018
 data
- Based on data from rain gauge stations

Methods

- Study area: snow-covered land areas (SWE > 10 kg m⁻²) north of 40 °N
- Study period: 1982-2014
- Comparison grid cell by grid cell

SWE in winter:

- How the SWE bias in February depends on the P and T biases from November to January?
 SWE in spring:
- How the bias in monthly SWE change depends on the P and T biases?

SWE biases was split into three components using linear regression analysis and the mean model biases:

- 1. the contribution of T (T_c)
- 2. the contribution of $P(P_c)$
- 3. the contribution of other factors (the residual term, **R**)

Models on average overestimate SWE

Monthly SWE sum

Results: winter

The models show on average positive bias in SWE, P and T

P bias

T bias

SWE bias

The contribution of P is larger than the **contribution of T**

 $T_{\rm C}$ = the contribution of T P_{C} = the contribution of P R = the contribution of other factors Δ SWE = SWE bias

Results: spring

The model biases show large variability

SWE bias

P bias

T bias

The residual term is larger than the contributions of T or P

 → The biases in snow melt rate in spring are dominated by other factors than T or P

 T_{C} = the contribution of T P_{C} = the contribution of P R = the contribution of other factors ΔSWE_{change} = bias in monthly SWE change

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITU

Conclusions

- The models generally overestimate SWE, but large variability exists between models
- In winter, the contribution of P to SWE bias is larger than the contribution of T
 - The residual is also typically large, indicating that P and T cannot explain the SWE biases alone
- In spring, the large residual term indicates that the biases in snow melt rate in spring are dominated by other factors than T or P
- Further analysis would be required in the future to fully understand the factors behind the residual term.

Thank you!

kerttu.kouki@fmi.fi

Kouki, K., Räisänen, P., Luojus, K., Luomaranta, A., & Riihelä, A. (2021). Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models with satellite-based SnowCCI data during 1982–2014. *The Cryosphere Discussions*, 1-32.